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Outline

♣ Reflecting diffusion processes on compact manifolds

♣ Killed diffusion processes on compact manifolds

♣ Diffusion processes on non-compact manifolds

♣ Semilinear SPDEs
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Framework

• M : d-dimensional connected compact Riemannian man-
ifold, possibly with a boundary ∂M and inward unit nor-
mal vector field N .

• V ∈ C2(M): µ(dx) := eV (x)dx is a probability measure
on M .

• Xt: the (reflecting or killed) diffusion process generated
by L := ∆ +∇V .

• P: the set of probability measures on M .

• P0 := {ν ∈ P : ν(∂M) < 1}.
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Framework

• Neumann (or closed, when ∂M = ∅) eigenproblem

Lum = −θmum, m ≥ 0, u0 ≡ 1, θ0 = 0, Num|∂M = 0.

• Dirichlet eigenproblem

Lφm = −λmφm, m ≥ 0, φ0 > 0, λ0 > 0, φm|∂M = 0.

Both {um}m≥0 and {φm}m≥0 are ONBs of L2(µ).

Since M is compact,

cm
2
d ≤ θm, λm − λ0 ≤ Cm

2
d , m ≥ 0

holds for some constants C > c > 0.
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Framework

Let Xt be the (reflecting if ∂M exists) diffusion process gen-
erated by L := ∆ + ∇V . We investigate the limit of the
empirical measure

µt :=
1

t

∫ t

0
δXsds, t > 0,

under the condition t < τ when the killed diffusion is con-
cerned, where

τ := inf{t ≥ 0 : Xt ∈ ∂M}.

Well known: for any initial distribution (not supported on
∂M when the killed diffusion is concerned), as t → ∞ we
have

• Ergodicity (LLN): P(µt → µ weakly) = 1;

• Quasi-ergodicity (Conditional LLN):
for any ε > 0, f ∈ Cb(M),
P(|µt(f)− µ∞(f)| ≥ ε|t < τ)→ 0.
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Aim

We investigate the convergence rate of µt under the Wasser-
stein distance W2 induced by the Riemannian metric ρ. In
general, for p ≥ 1,

Wp(µ1, µ2) = inf
π∈C(µ1,µ2)

(∫
M×M

ρ(x, y)pπ(dx,dy)

) 1
p

,

where C(µ1, µ2) is the set of all couplings of µ1 and µ2.

We consider the convergence of µt in the following senses:

• EW2(µt, µ)2 → 0 for the diffusion with reflecting or free
boundary;

• E
(
W2(µt, µ∞)2

∣∣t < τ
)
→ 0 for the killed diffusion;

• W2

(
E(µt|t < τ), µ∞

)2 → 0 for the killed diffusion.
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Reflecting or free boundary: compact manifold

Theorem (W./Jiexiang Zhu, aXiv:1906.03422)

(1) When ∂M = ∅ or convex, uniformly in x ∈M :

lim
t→∞

{
tEx[W2(µt, µ)2]

}
=

∞∑
i=1

2

θ2i
.

In general,

lim sup
t→∞

sup
x∈M

{
tEx[W2(µt, µ)2]

}
≤
∞∑
i=1

2

θ2i
,

and there exists a constant c > 0 such that

lim inf
t→∞

inf
x∈M

{
tEx[W2(µt, µ)2]

}
≥ c

∞∑
i=1

2

θ2i
.

The limit is finite if and only if d ≤ 3 since θi ∼ i
2
d
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Reflecting or free boundary: compact manifold

(2) Let d = 4. There exists a constant c > 0 such that

sup
x∈M

Ex[W2(µt, µ)2] ≤ ct−1 log(1 + t), t ≥ 0.

If M = T4 and V = 0 then there exists a constant c′ > 0
such that

inf
x∈M

Ex[W2(µt, µ)2]

≥ inf
x∈M

Ex[W1(µt, µ)2] ≥ c′t−1 log(1 + t), t ≥ 0.

The proof for M = T4 and V = 0 relies on specific formula for
eigenfunctions and Fourier transform of the volume measure.
However, this argument does not work for other situations.
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Reflecting or free boundary: compact manifold

(3) Let d ≥ 5. There exist constants c ≥ c′ > 0
such that

c′t−
2

d−2 ≤ inf
x∈M

{
Ex[W1(µt, µ)]

}2

≤ sup
x∈M

Ex[W2(µt, µ)2] ≤ ct−
2

d−2 .
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µνt := Eν(µt|t < τ): compact manifold

Let ∂M 6= ∅. For any

ν ∈ P0 := {ν ∈ P : ν(∂M) < 1},

we consider the conditional empirical measure

µνt := Eν(µt|t < τ), t > 0,

where µt := 1
t

∫ t
0 δXs

ds.

Let {φm, λm}m≥0 be the Dirichlet
eigenfunctions/eigenvalues of −L.

Let µ∞ = φ2
0µ.
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µνt := Eν(µt|t < τ): compact manifold

Theorem (W. JFA21’)

For any ν ∈ P0,

lim
t→∞

{
t2W2(µ

ν
t , µ∞)2

}
=

1

{µ(φ0)ν(φ0)}2
∞∑
m=1

{ν(φ0)µ(φm) + µ(φ0)ν(φm)}2

(λm − λ0)3
> 0,

the limit is finite if either d ≤ 5, or d ≥ 6 and ν = hµ with
h ∈ Lp(µ) for some p > 2d

d+6 .

The convergence of W2(µ
ν
t , µ∞)2 is of order t−2,

which is faster than t−1 for EνW2(µt, µ)2.
Recall µνt = Eν(µt|t < τ).
What about Eν [W2(µt, µ∞)2|t < τ ]?
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Eν(W2(µt, µ∞)2|t < τ): compact manifold

Theorem (W. JEMS revision)

(1) There exists c ∈ (0, 1] with c = 1 when ∂M is convex,
such that

c

∞∑
m=1

2

(λm − λ0)2

≤ lim inf
t→∞

inf
T≥t

{
tEν
[
W2(µt, µ∞)2

∣∣T < τ
]}

≤ lim sup
t→∞

sup
T≥t

{
tEν
[
W2(µt, µ∞)2

∣∣T < τ
]}

≤
∞∑
m=1

2

(λm − λ0)2
.

Note:
∑∞

m=1
2

(λm−λ0)2
<∞ if and only if d ≤ 3
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Eν(W2(µt, µ∞)2|t < τ): compact manifold

(2) When d = 4, there exist constants c1, c2 > 0 such that

sup
T≥t

Eν
[
W2(µt, µ∞)2

∣∣T < τ
]
≤ ct−1 log(t+ 1), t ≥ 1.

(3) When d ≥ 5, there exist constants c1, c2 > 0 such that

c1t
− 2
d−2 ≤ inf

T≥t
Eν
[
W2(µt, µ∞)2

∣∣T < τ
]

≤ sup
T≥t

Eν
[
W2(µt, µ∞)2

∣∣T < τ
]
≤ c2t−

2
d−2 , t ≥ 1.
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Non-compact manifold

Assume that M is non-compact possibly with a boundary
∂M which is convex outside a compact domain.

Let pt(x, y) be the heat kernel of the (Neumann) Markov
semigroup Pt generated by L. Assume

γ(t) :=

∫
M

(pt(x, x)− 1)µ(dx) <∞, t > 0.

Since γ(t) is deceasing in t, we have

β(ε) :=

∫ 1

ε
ds

∫ 1

s
γ(t)dt <∞, ε ∈ (0, 1].

Moreover, assume that for any ε > 0

α(ε) :=

∫
M

Exρ(x,Xε)
2µ(dx)

=

∫
M
ρ(x, y)2pε(x, y)µ(dx)µ(dy) <∞.
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Non-compact manifold

Theorem (W. SPA revision)

Under the above assumptions we have

(1) If the initial distribution ν satisfies ν ≤ c0µ for some
constant c0 > 0, then there exists a constant c > 0 such
that

Eν0W2(µt, µ)2 ≤ c inf
ε∈(0,1]

{
α(ε) + t−1β(ε)

}
, t ≥ 1.

(2) If Pt is ultracontravtive, then there exists a constant c >
0 such that for any x ∈M ,

ExW2(µt, µ)2 ≤ c
[
t−1 sup

s∈[0,1]
Ex|Xs|2

+ inf
ε∈(0,1]

{
α(ε) + t−1β(ε)

}]
, t ≥ 1.



Wasserstein
limits for
empirical

measures of
Dirichlet
diffusion
processes

Feng-Yu
Wang

Introduction

Introduction

Diffusions
with
reflecting or
free
boundary

Convergence
of µνt :=
Eν(µt|t <
τ): compact
manifold

Convergence
of
Eν(W2(µt, µ∞)2|t <
τ): compact
manifold

PSDEs

Non-compact manifold: lower bound

(3) For any initial distribution, there exists a constant c > 0
such that

EW1(µt, µ) ≥ ct−
1
2 , t ≥ 1.

(4) Let d ≥ 5, µ(|∇V |) < ∞ and there exists a constant
K ≥ 0 such that

Ric ≥ −K, −HessV ≥ K, V ≤ K.

Then for any probability measure ν, there exists a con-
stant c(ν) > 0 such that

EνW1(µt, µ) ≥ c(ν)t−
1
d−2 , t ≥ 1.
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Non-compact manifold: example

Let M = Rd and V (x) = −κ|x|p + W (x) for some constants
κ > 0, p > 1, and some function W ∈ C1(M) with ‖∇W‖∞ <
∞. Then for any initial distribution ν with ν ≤ c0µ for some
constant c0 > 0, there exists a constant c > 0 such that for
any t ≥ 1,

EνW2(µt, µ)2 ≤


ct
− 2(p−1)

(d−2)p+2 , if 4(p− 1) < dp,

ct−1 log(1 + t), if 4(p− 1) = dp,

ct−1, if 4(p− 1) > dp.

and {
EνW1(µt, µ)

}2 ≥ c′t− 2
(d−2)∨2 , t ≥ 1.

The order t−1 is exact for 4(p− 1) > dp,
but for larger d, the upper bound and lower bound have the
same order only when p→∞.
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SPDEs [W. 2102.00361]

Consider the following SDE on a separable Hilbert space H:

dXt =
{
∇V (Xt)−AXt

}
dt+

√
2 dWt,

where Wt is the cylindrical Brownian motion on H, i.e.

Wt =

∞∑
i=1

Bi
tei, t ≥ 0

for an orthonormal basis {ei}i≥1 of H and a sequence of in-
dependent one-dimensional Brownian motions {Bi

t}i≥1, V ∈
C1(H), and (A,D(A)) is a positive definite self-adjoint oper-
ator with discrete spectrum 0 < λi ↑ ∞.
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An example [W. 2102.00361]

Example. Let λi ≥ c0ip for some constant c0 > 0 and p > 1,
∇V be Lipschitz continuous and

|V (x)| ≤ c(1 + |x|), x ∈ H

holds for some constant c > 0. Then there exists a a constant
κ > 0 such that

Eµ[W2(µt, µ)2] ≤ κ(log t)p
−1−1, t ≥ 2.
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