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M: d-dimensional connected compact Riemannian man-
ifold, possibly with a boundary M and inward unit nor-
mal vector field V.

V e C2(M): p(dz) := ¢V @dz is a probability measure
on M.

X;: the (reflecting or killed) diffusion process generated
by L:= A+ VV.

‘P: the set of probability measures on M.

Po:={reP: v(OM) < 1}.
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e Neumann (or closed, when M = ()) eigenproblem
Ly, = =0, m >0, ug=1,00 =0, Nuy|gy = 0.
e Dirichlet eigenproblem
Lm = —Amém, m >0, ¢o >0, X0 > 0, dmloar = 0.

Both {u }m>0 and {ém }m>0 are ONBs of L?(u).

Since M is compact,

v

emd < O, )\m—)\ong%, m >0

holds for some constants C' > ¢ > 0.
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Let X; be the (reflecting if 0M exists) diffusion process gen-
erated by L := A + VV. We investigate the limit of the
empirical measure

1 t
Mt ‘= —/ 5Xsd8, t> 0,
t Jo

under the condition ¢ < 7 when the killed diffusion is con-
cerned, where

T:=inf{t >0: Xy € OM}.

Well known: for any initial distribution (not supported on
OM when the killed diffusion is concerned), as ¢ — oo we
have
e Ergodicity (LLN): P(y; — p weakly) = 1;
e Quasi-ergodicity (Conditional LLN):
for any € > 0, f € Cp(M),
P(u(f) = poo ()| Z €]t < 7) = 0.
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We investigate the convergence rate of p; under the Wasser-
stein distance Wy induced by the Riemannian metric p. In
general, for p > 1,

Wp(#la“Q) = inf </ p(.’l),y)pﬂ'(dl',dy)) pa
m€C(pa,p2) \ JMxM

where C(u1, 12) is the set of all couplings of p1 and pus.

We consider the convergence of y; in the following senses:

EWs (p1¢, i1)? — 0 for the diffusion with reflecting or free
boundary;

E(Wz(,ut, ,uoo)2|t < T) — 0 for the killed diffusion;

Wa (E (et < 7), ptoo)” — 0 for the killed diffusion.
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em (W /. Zhu, 1906.03422)
When OM = () or convex, uniformly in x € M:

t—o0

o0
. 2
lim {tEx[Wg(,ut,u)Q]} = E k
i=1 %
In general,

lim sup sup {42 (W (e, 1)?] } < fj >

t—oo zeM

and there exists a constant ¢ > 0 such that

2
02

s

o o o €T 2
htrgégfxléllf/f {ﬂE [Wa(pt, 1) ]} >c

=1

The limit is finite if and only if d < 3 since 0; ~ i3
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(2) Let d =4. There exists a constant ¢ > 0 such that

sup E*[Wo(uz, p)?] < et log(1+1), t>0.
zeM

If M = T* and V = 0 then there exists a constant ¢/ > 0
such that

: iz 2
nf E*[Wa(ue, 1)7]

> inf BT[Wy(u, 1)°] > 't log(1 +1), ¢>0.
xTe

The proof for M = T* and V' = 0 relies on specific formula for
eigenfunctions and Fourier transform of the volume measure.
However, this argument does not work for other situations.
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A < inf {E7 Wi )]
Diffusions xeM
with
< sup B (W u)?] < et 75
boundary weM
oo
Y (et
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Introduction

Introduction py =K (uelt < 7), t>0,

t
where [ 1= %fo ox,ds.
boundary

Convergence
=+ Let {¢m, A\ }m>o0 be the Dirichlet
T): compact

manifold eigenfunctions/eigenvalues of —L.

Convergence
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Theorem (W. JFA21’)

For any v € Py,
: 2 v 2
Jim {5 W (u, p1oo)* }

_ 1 i {v(¢0) 1(Pm) + 1(d0)v(dm)}?

> 0,
{r(do)v(do)}* = (Am = Ao)?
the limit is finite if either d <5, or d > 6 and v = hu with
h € LP(p) for some p > %.

y

The convergence of Wa(j1Y, j100)? is of order ¢ =2,
which is faster than ¢! for EYWy(uy, p)?.
Recall pf = E¥ (et < 7).

What about E”[Wa(uu, pioo )2t < 77
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(1) There exists ¢ € (0,1] with ¢ = 1 when OM s conve,

such that
mZ:: - >\0)
< lim nf inf { B [Wa (1, )| T < 71}

< lim sup sup {ﬂE [Wg(ut,,uoo }T < T]}
t—oo T>t

(e}

_
()\m - )\0)2 ‘

IA

m=1

Note: > o7 m < oo if and only if d < 3
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(2) When d = 4, there exist constants c1,co > 0 such that

sup EY [Wg(,ut,,uoo)z‘T <7] < ct llog(t +1), t>1.
T>t

(3) When d > 5, there exist constants c1,co > 0 such that

c:115_ﬁ < r_}anftEV [WQ(MtaNOO)2|T < T}

< supE” [W2(,ut,ﬂoo)2|T < 7'] < Cgt_ﬁ, t>1.
T>t
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Assume that M is non-compact possibly with a boundary
OM which is convex outside a compact domain.

Let pi(z,y) be the heat kernel of the (Neumann) Markov
semigroup P; generated by L. Assume

() = /M(pt(:v,x) ~ Dp(dz) < 00, > 0.

Since () is deceasing in t, we have

1 1
B(e) ::/ ds/ ~(t)dt < o0, €€ (0,1].

Moreover, assume that for any € > 0
a(e)i= | E*pla, XoPu(do)
M

_ / ol ) 2pe () p(dz) pu(dy) < oo.
M



‘Wasserstein
limits for
empirical

measures of
Dirichlet
diffusion
processes

Feng-Yu
Wang

Introduction
Introduction
Diffusions
with
reflecting or
fr

boundary

compact
manifold

Convergence

7): compact
manifold

Under the above assumptions we have

(1) If the initial distribution v satisfies v < cou for some
constant cg > 0, then there exists a constant ¢ > 0 such
that

E"OWy (1, ) <ec 1{11" {a )+t 15( )} t>1.
c€(0

(2) If P, is ultracontravtive, then there exists a constant ¢ >
0 such that for any x € M,

E*Wo (a1, 1) < c[t—l sup E7|X,[?
s€[0,1]

+ i, @+ epen], o2t
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(3) For any initial distribution, there exists a constant ¢ > 0
such that )
]EWI(,LLt;M) Z Ct_ia t Z 1.

(4) Let d > 5, pu(]VV]) < oo and there exists a constant
K > 0 such that
Ric > —K, —Hessy > K, V < K.

Then for any probability measure v, there exists a con-
stant ¢(v) > 0 such that

EYW1 (e, 1) > c(u)t_ﬁ, t>1.
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limit.s.ftoi Let M = R? and V(z) = —«|z|P + W (z) for some constants
empirica.

L s K > 0,p > 1, and some function W € C1(M) with |[VIV |00 <

Dirichlet oan0 o o . .
diffusion 0o. Then for any initial distribution v with v < ¢ou for some
processes .

constant ¢y > 0, there exists a constant ¢ > 0 such that for
Feng-Yu

Wang any t Z ]_,

Introduction 2(p—1

Introduction Ct_ (d_z)p+27 lf 4(p _ 1) < dp7
E"Wa (i, 11)* < S ct=Llog(1 +1¢), if 4(p— 1) = dp,
et if 4(p — 1) > dp.
and
‘ {EYW, (e, )} > 't @ @I, > 1.
compact
S The order ¢~ is exact for 4(p — 1) > dp,

Convergence

but for larger d, the upper bound and lower bound have the
i same order only when p — oo.

manifold
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where W; is the cylindrical Brownian motion on H, i.e.

Introduction

Introduction

oo
i=1

for an orthonormal basis {e;};>1 of H and a sequence of in-

dependent one-dimensional Brownian motions {B;};>1, V €
| CYH), and (A, D(A)) is a positive definite self-adjoint oper-
S ator with discrete spectrum 0 < \; 1 co.

ompact

fold
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Example. Let \; > cgiP for some constant ¢y > 0 and p > 1,
VV be Lipschitz continuous and

V()| <e(l+z|), z€H

holds for some constant ¢ > 0. Then there exists a a constant
k > 0 such that

BH W (e, 1)?] < klogt)P 1, ¢ > 2.
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