> Feng-Yu Wang

Introduction

Introduction

Diffusions with reflecting of free boundary

Convergence of $\mu_t^{\nu} :=$ $\mathbb{E}^{\nu}(\mu_t | t < \tau)$: compact manifold

Convergence of $\mathbb{E}^{\nu} (\mathbb{W}_2(\mu_t, \mu_{\infty})^2 | t + \tau):$ compact manifold

Wasserstein limits for empirical measures of Dirichlet diffusion processes

Feng-Yu Wang

16th Workshop on Markov Processes and Related Topics (12-16/07/2021)

Central Sourth University, Changsha

Outline

Wasserstein limits for empirical measures of Dirichlet diffusion processes

> Feng-Yu Wang

Introduction

Introduction

Diffusions with reflecting or free boundary

Convergence of $\mu_t^{\nu} :=$ $\mathbb{E}^{\nu}(\mu_t | t < \tau)$: compact manifold

Convergence of $\mathbb{E}^{\nu}(\mathbb{W}_{2}(\mu_{t}, \mu_{\infty})^{2}|t$ $\tau): \text{ compact}$ manifold

 \clubsuit Reflecting diffusion processes on compact manifolds

& Killed diffusion processes on compact manifolds

 \clubsuit Diffusion processes on non-compact manifolds

Semilinear SPDEs

Framework

Wasserstein limits for empirical measures of Dirichlet diffusion processes

> Feng-Yu Wang

Introduction

Introduction

Diffusions with reflecting of free boundary

Convergence of $\mu_t^{\nu} :=$ $\mathbb{E}^{\nu}(\mu_t | t < \tau)$: compact manifold

Convergence of $\mathbb{E}^{\nu}(\mathbb{W}_2(\mu_t, \mu_{\infty})^2$ $\tau): \text{ compact}$ manifold

• M: d-dimensional connected compact Riemannian manifold, possibly with a boundary ∂M and inward unit normal vector field N.

• $V \in C^2(M)$: $\mu(dx) := e^{V(x)} dx$ is a probability measure on M.

- X_t : the (reflecting or killed) diffusion process generated by $L := \Delta + \nabla V$.
- \mathcal{P} : the set of probability measures on M.

• $\mathcal{P}_0 := \{ \nu \in \mathcal{P} : \nu(\partial M) < 1 \}.$

Framework

Wasserstein limits for empirical measures of Dirichlet diffusion processes

> Feng-Yu Wang

Introduction

Introduction

Diffusions with reflecting ou free boundary

Convergence of $\mu_t^{\nu} :=$ $\mathbb{E}^{\nu}(\mu_t | t < \tau)$: compact manifold

Convergence of $\mathbb{E}^{\nu}(\mathbb{W}_2(\mu_t, \mu_{\infty}))$ $\tau)$: compact manifold

• Neumann (or closed, when $\partial M = \emptyset$) eigenproblem

 $Lu_m = -\theta_m u_m, \ m \ge 0, \ u_0 \equiv 1, \theta_0 = 0, \ Nu_m|_{\partial M} = 0.$

• Dirichlet eigenproblem

 $L\phi_m = -\lambda_m \phi_m, \ m \ge 0, \ \phi_0 > 0, \lambda_0 > 0, \phi_m|_{\partial M} = 0.$ Both $\{u_m\}_{m>0}$ and $\{\phi_m\}_{m>0}$ are ONBs of $L^2(\mu)$.

Since M is compact,

$$cm^{\frac{2}{d}} \le \theta_m, \ \lambda_m - \lambda_0 \le Cm^{\frac{2}{d}}, \ m \ge 0$$

holds for some constants C > c > 0.

Framework

Wasserstein limits for empirical measures of Dirichlet diffusion processes

> Feng-Yu Wang

Introduction

Introduction

Diffusions with reflecting or free boundary

Convergence of $\mu_t^{\nu} :=$ $\mathbb{E}^{\nu}(\mu_t | t < \tau)$: compact manifold

Convergence of $\mathbb{E}^{\nu}(\mathbb{W}_{2}(\mu_{t}, \mu_{\circ\circ}))$ $\tau):$ compact manifold

Let X_t be the (reflecting if ∂M exists) diffusion process generated by $L := \Delta + \nabla V$. We investigate the limit of the empirical measure

$$\mu_t := \frac{1}{t} \int_0^t \delta_{X_s} \mathrm{d}s, \quad t > 0,$$

under the condition $t < \tau$ when the killed diffusion is concerned, where

$$\tau := \inf\{t \ge 0 : X_t \in \partial M\}.$$

Well known: for any initial distribution (not supported on ∂M when the killed diffusion is concerned), as $t \to \infty$ we have

- Ergodicity (LLN): $\mathbb{P}(\mu_t \to \mu \text{ weakly}) = 1;$
- Quasi-ergodicity (Conditional LLN):

for any $\varepsilon > 0, f \in C_b(M)$, $\mathbb{P}(|\mu_t(f) - \mu_\infty(f)| \ge \varepsilon | t < \tau) \to 0.$

Aim

Wasserstein limits for empirical measures of Dirichlet diffusion processes

> Feng-Yu Wang

Introduction

Introduction

Diffusions with reflecting or free boundary

Convergence of $\mu_t^{\nu} :=$ $\mathbb{E}^{\nu}(\mu_t | t < \tau)$: compact manifold

Convergence of $\mathbb{E}^{\nu}(\mathbb{W}_2(\mu_t, \mu_{\infty}))$ $\tau): \text{ compact}$ manifold

_ _ _ _

We investigate the convergence rate of μ_t under the Wasserstein distance \mathbb{W}_2 induced by the Riemannian metric ρ . In general, for $p \geq 1$,

$$\mathbb{W}_p(\mu_1,\mu_2) = \inf_{\pi \in \mathcal{C}(\mu_1,\mu_2)} \left(\int_{M \times M} \rho(x,y)^p \pi(\mathrm{d}x,\mathrm{d}y) \right)^{\frac{1}{p}},$$

where $\mathcal{C}(\mu_1, \mu_2)$ is the set of all couplings of μ_1 and μ_2 .

We consider the convergence of μ_t in the following senses:

- $\mathbb{EW}_2(\mu_t, \mu)^2 \to 0$ for the diffusion with reflecting or free boundary;
- $\mathbb{E}(\mathbb{W}_2(\mu_t, \mu_\infty)^2 | t < \tau) \to 0$ for the killed diffusion;
- $\mathbb{W}_2(\mathbb{E}(\mu_t | t < \tau), \mu_{\infty})^2 \to 0$ for the killed diffusion.

Reflecting or free boundary: compact manifold

Wasserstein limits for empirical measures of Dirichlet diffusion processes

> Feng-Yu Wang

Introduction

Introduction

Diffusions with reflecting or free boundary

Convergence of $\mu_t^{\nu} :=$ $\mathbb{E}^{\nu}(\mu_t | t < \tau)$: compact manifold

Convergence of $\mathbb{E}^{\nu}(\mathbb{W}_{2}(\mu_{t}, \mu_{\circ\circ})^{2})$: compact manifold

Theorem (W./Jiexiang Zhu, aXiv:1906.03422)

(1) When $\partial M = \emptyset$ or convex, uniformly in $x \in M$:

$$\lim_{t \to \infty} \left\{ t \mathbb{E}^x [\mathbb{W}_2(\mu_t, \mu)^2] \right\} = \sum_{i=1}^{\infty} \frac{2}{\theta_i^2}$$

In general,

 $\limsup_{t \to \infty} \sup_{x \in M} \left\{ t \mathbb{E}^x [\mathbb{W}_2(\mu_t, \mu)^2] \right\} \le \sum_{i=1}^\infty \frac{2}{\theta_i^2},$

and there exists a constant c > 0 such that

$$\liminf_{t \to \infty} \inf_{x \in M} \left\{ t \mathbb{E}^x [\mathbb{W}_2(\mu_t, \mu)^2] \right\} \ge c \sum_{i=1}^{\infty} \frac{2}{\theta_i^2}.$$

The limit is finite if and only if $d \leq 3$ since $\theta_i \sim i^{\frac{2}{d}}$

Reflecting or free boundary: compact manifold

Wasserstein limits for empirical measures of Dirichlet diffusion processes

> Feng-Yu Wang

Introduction

Introduction

Diffusions with reflecting or free boundary

Convergence of $\mu_t^{\nu} :=$ $\mathbb{E}^{\nu}(\mu_t|t < \tau)$: compact manifold

Convergence of $\mathbb{E}^{\nu}(\mathbb{W}_2(\mu_t, \mu_{\infty}, \tau))$: compact manifold

(2) Let d = 4. There exists a constant c > 0 such that

$$\sup_{x \in M} \mathbb{E}^{x}[\mathbb{W}_{2}(\mu_{t}, \mu)^{2}] \le ct^{-1}\log(1+t), \quad t \ge 0.$$

If $M = \mathbb{T}^4$ and V = 0 then there exists a constant c' > 0 such that

$$\inf_{x \in M} \mathbb{E}^x [\mathbb{W}_2(\mu_t, \mu)^2]$$

$$\geq \inf_{x \in M} \mathbb{E}^x [\mathbb{W}_1(\mu_t, \mu)^2] \geq c' t^{-1} \log(1+t), \quad t \geq 0$$

The proof for $M = \mathbb{T}^4$ and V = 0 relies on specific formula for eigenfunctions and Fourier transform of the volume measure. However, this argument does not work for other situations.

Reflecting or free boundary: compact manifold

Wasserstein limits for empirical measures of Dirichlet diffusion processes

> Feng-Yu Wang

Introduction

Introduction

Diffusions with reflecting or free boundary

Convergence of $\mu_t^{\nu} :=$ $\mathbb{E}^{\nu}(\mu_t | t < \tau)$: compact manifold

Convergence of $\mathbb{E}^{\nu}(\mathbb{W}_{2}(\mu_{t}, \mu_{\infty})^{2}|t \cdot \tau)$: compact manifold

(3) Let $d \ge 5$. There exist constants $c \ge c' > 0$ such that

 $c't^{-\frac{2}{d-2}} \leq \inf_{x \in M} \left\{ \mathbb{E}^x[\mathbb{W}_1(\mu_t, \mu)] \right\}^2$ $\leq \sup_{x \in M} \mathbb{E}^x[\mathbb{W}_2(\mu_t, \mu)^2] \leq ct^{-\frac{2}{d-2}}.$

$$\mu_t^{\nu} := \mathbb{E}^{\nu}(\mu_t | t < \tau)$$
: compact manifold

> Feng-Yu Wang

Introduction

Introduction

Diffusions with reflecting of free boundary

Convergence of $\mu_t^{\nu} :=$ $\mathbb{E}^{\nu}(\mu_t | t < \tau)$: compact manifold

Convergence of $\mathbb{E}^{\nu}(\mathbb{W}_2(\mu_t, \mu_{\infty}, \tau))$: compact manifold

_ _ _ _

Let $\partial M \neq \emptyset$. For any

$$\nu \in \mathcal{P}_0 := \{\nu \in \mathcal{P} : \nu(\partial M) < 1\},\$$

we consider the conditional empirical measure

$$\mu_t^{\nu} := \mathbb{E}^{\nu}(\mu_t | t < \tau), \quad t > 0,$$

where $\mu_t := \frac{1}{t} \int_0^t \delta_{X_s} ds$.

Let $\{\phi_m, \lambda_m\}_{m \ge 0}$ be the Dirichlet eigenfunctions/eigenvalues of -L.

Let
$$\mu_{\infty} = \phi_0^2 \mu$$
.

$$\mu_t^{\nu} := \mathbb{E}^{\nu}(\mu_t | t < \tau)$$
: compact manifold

> Feng-Yu Wang

Introduction

Introductior

Diffusions with reflecting o free boundary

Convergence of $\mu_t^{\nu} :=$ $\mathbb{E}^{\nu}(\mu_t | t < \tau)$: compact manifold

Convergence of $\mathbb{E}^{\nu}(\mathbb{W}_{2}(\mu_{t}, \mu_{\circ\circ}))$ $\tau): \text{ compact}$ manifold

_ _ _ _

Theorem (W. JFA21') For any $\nu \in \mathcal{P}_0$, $\lim_{t \to \infty} \left\{ t^2 \mathbb{W}_2(\mu_t^{\nu}, \mu_{\infty})^2 \right\}$ $= \frac{1}{\{\mu(\phi_0)\nu(\phi_0)\}^2} \sum_{m=1}^{\infty} \frac{\{\nu(\phi_0)\mu(\phi_m) + \mu(\phi_0)\nu(\phi_m)\}^2}{(\lambda_m - \lambda_0)^3} > 0,$

the limit is finite if either $d \leq 5$, or $d \geq 6$ and $\nu = h\mu$ with $h \in L^p(\mu)$ for some $p > \frac{2d}{d+6}$.

The convergence of $\mathbb{W}_2(\mu_t^{\nu}, \mu_{\infty})^2$ is of order t^{-2} , which is faster than t^{-1} for $\mathbb{E}^{\nu}\mathbb{W}_2(\mu_t, \mu)^2$. Recall $\mu_t^{\nu} = \mathbb{E}^{\nu}(\mu_t | t < \tau)$. What about $\mathbb{E}^{\nu}[\mathbb{W}_2(\mu_t, \mu_{\infty})^2 | t < \tau]$?

$$\mathbb{E}^{\nu}(\mathbb{W}_2(\mu_t,\mu_{\infty})^2|t<\tau)$$
: compact manifold

> Feng-Yu Wang

Introduction

Introduction

Diffusions with reflecting o free boundary

Convergence of $\mu_t^{\nu} :=$ $\mathbb{E}^{\nu}(\mu_t | t < \tau)$: compact manifold

Convergence of $\mathbb{E}^{\nu}(\mathbb{W}_2(\mu_t, \mu_{\infty}$ $\tau)$: compact manifold

Theorem (W. JEMS revision)

(1) There exists $c \in (0,1]$ with c = 1 when ∂M is convex, such that

$$c \sum_{m=1}^{\infty} \frac{2}{(\lambda_m - \lambda_0)^2}$$

$$\leq \liminf_{t \to \infty} \inf_{T \geq t} \left\{ t \mathbb{E}^{\nu} \left[\mathbb{W}_2(\mu_t, \mu_{\infty})^2 | T < \tau \right] \right\}$$

$$\leq \limsup_{t \to \infty} \sup_{T \geq t} \left\{ t \mathbb{E}^{\nu} \left[\mathbb{W}_2(\mu_t, \mu_{\infty})^2 | T < \tau \right] \right\}$$

$$\leq \sum_{m=1}^{\infty} \frac{2}{(\lambda_m - \lambda_0)^2}.$$

Note: $\sum_{m=1}^{\infty} \frac{2}{(\lambda_m - \lambda_0)^2} < \infty$ if and only if $d \leq 3$

$$\mathbb{E}^{\nu}(\mathbb{W}_2(\mu_t,\mu_\infty)^2|t<\tau)$$
: compact manifold

> Feng-Yu Wang

Introduction

Introduction

Diffusions with reflecting or free boundary

Convergence of $\mu_t^{\nu} :=$ $\mathbb{E}^{\nu}(\mu_t | t < \tau)$: compact manifold

Convergence of $\mathbb{E}^{\nu} (\mathbb{W}_2(\mu_t, \mu_{\infty})^2 | t \cdot \tau)$: compact manifold $\sup_{T \ge t} \mathbb{E}^{\nu} \left[\mathbb{W}_2(\mu_t, \mu_\infty)^2 \middle| T < \tau \right] \le ct^{-1} \log(t+1), \quad t \ge 1.$

(2) When d = 4, there exist constants $c_1, c_2 > 0$ such that

(3) When $d \ge 5$, there exist constants $c_1, c_2 > 0$ such that $c_1 t^{-\frac{2}{d-2}} \le \inf_{T \ge t} \mathbb{E}^{\nu} \left[\mathbb{W}_2(\mu_t, \mu_\infty)^2 | T < \tau \right]$ $\le \sup_{T \ge t} \mathbb{E}^{\nu} \left[\mathbb{W}_2(\mu_t, \mu_\infty)^2 | T < \tau \right] \le c_2 t^{-\frac{2}{d-2}}, \quad t \ge 1.$

Non-compact manifold

Wasserstein limits for empirical measures of Dirichlet diffusion processes

> Feng-Yu Wang

Introduction

Introduction

Diffusions with reflecting or free boundary

Convergence of $\mu_t^{\nu} :=$ $\mathbb{E}^{\nu}(\mu_t|t < \tau)$: compact manifold

Convergence of $\mathbb{E}^{\nu}(\mathbb{W}_{2}(\mu_{t}, \mu_{\infty})^{2}|t < \tau)$: compact manifold

Assume that M is non-compact possibly with a boundary ∂M which is convex outside a compact domain.

Let $p_t(x, y)$ be the heat kernel of the (Neumann) Markov semigroup P_t generated by L. Assume

$$\gamma(t) := \int_M (p_t(x, x) - 1)\mu(\mathrm{d}x) < \infty, \quad t > 0.$$

Since $\gamma(t)$ is deceasing in t, we have

$$\beta(\varepsilon) := \int_{\varepsilon}^{1} \mathrm{d}s \int_{s}^{1} \gamma(t) \mathrm{d}t < \infty, \ \ \varepsilon \in (0,1].$$

Moreover, assume that for any $\varepsilon > 0$

$$\begin{aligned} \alpha(\varepsilon) &:= \int_M \mathbb{E}^x \rho(x, X_{\varepsilon})^2 \mu(\mathrm{d}x) \\ &= \int_M \rho(x, y)^2 p_{\varepsilon}(x, y) \mu(\mathrm{d}x) \mu(\mathrm{d}y) < \infty. \end{aligned}$$

Non-compact manifold

Wasserstein limits for empirical measures of Dirichlet diffusion processes

> Feng-Yu Wang

Introduction

Introduction

Diffusions with reflecting o free boundary

Convergence of $\mu_t^{\nu} :=$ $\mathbb{E}^{\nu}(\mu_t | t < \tau)$: compact manifold

Convergence of $\mathbb{E}^{\nu}(\mathbb{W}_2(\mu_t, \mu_{\infty}))$ $\tau): \text{ compact}$ manifold

Theorem (W. SPA revision)

Under the above assumptions we have

(1) If the initial distribution ν satisfies $\nu \leq c_0 \mu$ for some constant $c_0 > 0$, then there exists a constant c > 0 such that

 $\mathbb{E}^{\nu_0} \mathbb{W}_2(\mu_t, \mu)^2 \le c \inf_{\varepsilon \in (0,1]} \left\{ \alpha(\varepsilon) + t^{-1} \beta(\varepsilon) \right\}, \quad t \ge 1.$

(2) If P_t is ultracontravive, then there exists a constant c > 0 such that for any $x \in M$,

$$\begin{split} \mathbb{E}^{x} \mathbb{W}_{2}(\mu_{t},\mu)^{2} &\leq c \Big[t^{-1} \sup_{s \in [0,1]} \mathbb{E}^{x} |X_{s}|^{2} \\ &+ \inf_{\varepsilon \in (0,1]} \big\{ \alpha(\varepsilon) + t^{-1} \beta(\varepsilon) \big\} \Big], \quad t \geq 1. \end{split}$$

Non-compact manifold: lower bound

Wasserstein limits for empirical measures of Dirichlet diffusion processes

> Feng-Yu Wang

Introduction

Introduction

Diffusions with reflecting of free boundary

Convergence of $\mu_t^{\nu} :=$ $\mathbb{E}^{\nu}(\mu_t|t < \tau)$: compact manifold

Convergence of $\mathbb{E}^{\nu}(\mathbb{W}_{2}(\mu_{t}, \mu_{\infty})^{2}|t)$ $\tau): \text{ compact}$ manifold

(3) For any initial distribution, there exists a constant c > 0 such that
 EW₁(μ_t, μ) > ct^{-1/2}, t > 1.

(4) Let $d \ge 5$, $\mu(|\nabla V|) < \infty$ and there exists a constant $K \ge 0$ such that

 $\operatorname{Ric} \geq -K, -\operatorname{Hess}_V \geq K, V \leq K.$

Then for any probability measure ν , there exists a constant $c(\nu) > 0$ such that

 $\mathbb{E}^{\nu}W_1(\mu_t,\mu) \ge c(\nu)t^{-\frac{1}{d-2}}, \ t \ge 1.$

Non-compact manifold: example

Wasserstein limits for empirical measures of Dirichlet diffusion processes

> Feng-Yu Wang

Introduction

Introduction

Diffusions with reflecting of free boundary

Convergence of $\mu_t^{\nu} :=$ $\mathbb{E}^{\nu}(\mu_t|t < \tau)$: compact manifold

Convergence of $\mathbb{E}^{\nu}(\mathbb{W}_2(\mu_t, \mu_{\infty}$ $\tau)$: compact manifold Let $M = \mathbb{R}^d$ and $V(x) = -\kappa |x|^p + W(x)$ for some constants $\kappa > 0, p > 1$, and some function $W \in C^1(M)$ with $\|\nabla W\|_{\infty} < \infty$. Then for any initial distribution ν with $\nu \le c_0 \mu$ for some constant $c_0 > 0$, there exists a constant c > 0 such that for any $t \ge 1$,

$$\mathbb{E}^{\nu} \mathbb{W}_{2}(\mu_{t},\mu)^{2} \leq \begin{cases} ct^{-\frac{2(p-1)}{(d-2)p+2}}, & \text{if } 4(p-1) < dp, \\ ct^{-1}\log(1+t), & \text{if } 4(p-1) = dp, \\ ct^{-1}, & \text{if } 4(p-1) > dp. \end{cases}$$

and

$$\left\{\mathbb{E}^{\nu}W_1(\mu_t,\mu)\right\}^2 \ge c't^{-\frac{2}{(d-2)\vee 2}}, \ t\ge 1$$

The order t^{-1} is exact for 4(p-1) > dp,

but for larger d, the upper bound and lower bound have the same order only when $p \to \infty$.

SPDEs [W. 2102.00361]

Wasserstein limits for empirical measures of Dirichlet diffusion processes

> Feng-Yu Wang

Introduction

Introduction

Diffusions with reflecting or free boundary

Convergence of $\mu_t^{\nu} :=$ $\mathbb{E}^{\nu}(\mu_t | t < \tau)$: compact manifold

Convergence of $\mathbb{E}^{\nu}(\mathbb{W}_{2}(\mu_{t}, \mu_{\infty}))^{2}$ $\tau): \text{ compact}$ manifold

Consider the following SDE on a separable Hilbert space $\mathbb H$:

$$\mathrm{d}X_t = \left\{\nabla V(X_t) - AX_t\right\}\mathrm{d}t + \sqrt{2}\,\mathrm{d}W_t,$$

where W_t is the cylindrical Brownian motion on \mathbb{H} , i.e.

$$W_t = \sum_{i=1}^{\infty} B_t^i e_i, \quad t \ge 0$$

for an orthonormal basis $\{e_i\}_{i\geq 1}$ of \mathbb{H} and a sequence of independent one-dimensional Brownian motions $\{B_t^i\}_{i\geq 1}, V \in C^1(\mathbb{H})$, and $(A, \mathcal{D}(A))$ is a positive definite self-adjoint operator with discrete spectrum $0 < \lambda_i \uparrow \infty$.

An example [W. 2102.00361]

Wasserstein limits for empirical measures of Dirichlet diffusion processes

> Feng-Yu Wang

Introduction

Introduction

Diffusions with reflecting or free boundary

Convergence of $\mu_t^{\nu} :=$ $\mathbb{E}^{\nu}(\mu_t | t < \tau)$: compact manifold

Convergence of $\mathbb{E}^{\nu}(\mathbb{W}_{2}(\mu_{t}, \mu_{\infty})^{2}|t < \tau): \text{ compact}$ manifold

Example. Let $\lambda_i \geq c_0 i^p$ for some constant $c_0 > 0$ and p > 1, ∇V be Lipschitz continuous and

 $|V(x)| \le c(1+|x|), \quad x \in \mathbb{H}$

holds for some constant c > 0. Then there exists a constant $\kappa > 0$ such that

 $\mathbb{E}^{\mu}[\mathbb{W}_{2}(\mu_{t},\mu)^{2}] \leq \kappa (\log t)^{p^{-1}-1}, t \geq 2.$

Papers

Wasserstein limits for empirical measures of Dirichlet diffusion processes

> Feng-Yu Wang

Introduction

Introduction

Diffusions with reflecting or free boundary

Convergence of $\mu_t^{\nu} :=$ $\mathbb{E}^{\nu}(\mu_t | t < \tau)$: compact manifold

Convergence of $\mathbb{E}^{\nu} (\mathbb{W}_2(\mu_t, \mu_{\infty})^2 |$ $\tau): \text{ compact}$ manifold

- W. J.-X. Zhu, Limit theorems in Wasserstein distance for empirical measures of diffusion processes on Riemannian manifolds, aXiv:1906.03422.
- W., Precise limit in Wasserstein distance for conditional empirical measures of Dirichlet diffusion processes, JFA21'
- W., Convergence in Wasserstein distance for empirical measures of Dirichlet diffusion processes on manifolds, JEMS revision arXiv:2005.09290.
- W., Wasserstein convergence rate for empirical measures on noncompact manifolds, SPA revision arXiv:2007.14667.
- W., Convergence in Wasserstein distance for empirical measures of semilinear SPDEs, arXiv:2102.00361.

> Feng-Yu Wang

Introduction

Introductior

Diffusions with reflecting o free boundary

Convergence of $\mu_t^{\nu} :=$ $\mathbb{E}^{\nu}(\mu_t | t < \tau)$: compact manifold

Convergence of $\mathbb{E}^{\nu}(\mathbb{W}_{2}(\mu_{t}, \mu_{\infty})^{2}|t < \tau)$: compact manifold

Thank You